Open Source im professionellen Einsatz

Erster funktionierender Quantensimulator am KIT

04.10.2017

Forscher am Karlsruher Institut für Technologie (KIT) haben mit Hilfe eines Quantensimulators einen großen Schritt zum quantenmechanischen Verständnis des Pflanzenstoffwechsels getan. Im nächsten Schritt wollen sie ihn derart erweitern, dass er Berechnungen bewältigen kann, die auf herkömmliche Art länger dauern würden als das Alter des Universums.

369

„Ein Quantensimulator ist eine Vorstufe des Quantencomputers. Im Gegensatz zu diesem ist er nicht in der Lage, beliebige Berechnun-gen durchzuführen, sondern ist für die Lösung eines bestimmten Problems konzipiert“, sagt Jochen Braumüller vom Physikalischen Institut des KIT. Da sich die hohe Wirksamkeit des Prozesses der Stoff- und Energieumwandlung, den die Pflanzen mithilfe des Lichts vollziehen, mit klassischen physikalischen Theorien nicht vollständig verstehen lässt, ziehen Forscher wie Braumüller dafür das Quantenmodell heran. Gemeinsam mit Wissenschaftlern des Instituts für Theoretische Festkörperphysik (TFP) hat er erstmals im Experiment gezeigt, dass Quantensimulationen der Wechselwirkung zwischen Licht und Materie als Basis der Fotosynthese und damit der Grundlage unseres Lebens funktionieren.

Die Wechselwirkung zwischen Licht und Stoff bei der Fotosynthese – wenn zum Beispiel Sonnenlicht auf ein Blatt trifft – lässt sich auf mikroskopischer Ebene als Interaktion der Photonen des Lichts mit den Atomen der Materie beschreiben. Die hohe Effizienz dieses Mechanismus von fast 100 Prozent legt nahe, dass dieser den Regeln der Quantenphysik unterliegt, was sich mit klassischen Computern und einfachen Bits nur schwer simulieren lässt. Quantencomputer oder auch die einfacheren Quantensimulatoren können das vorliegende Problem schneller und effizienter lösen.

Braumüller und seine Mitautoren haben jetzt einen der ersten funktionierenden Bausteine für einen Quantensimulator der Licht-Materie Wechselwirkung entwickelt: Dabei repräsentieren supraleitende Schaltkreise als Quantenbits die Atome, mithin die Materie, und elektromagnetische Resonatoren die Photonen, also das Licht. Die Physiker konnten damit einen Effekt herbeiführen, bei dem sowohl das Quantenbit als auch der Resonator sich gleichzeitig in zwei gegensätzlichen Zuständen befanden. „Qubit und Resonator sind dabei verschränkt“, sagt Michael Marthaler vom TFP des KIT. „Das ist auch der Grund für die exponentiell verbesserte Rechenleistung, gegenüber klassischen Rechnern.“ Mit der Erfüllung dieses Grund-prinzips der Quantenmechanik habe man nun die Machbarkeit analoger Quantensimulation mit supraleitenden Schaltkreisen gezeigt, so die Forscher.

Als nächsten Schritt wollen sie ihr System um viele weitere Bausteine erweitern. "Eine klassische Simulation dieses erweiterten Systems würde länger dauern als das Alter des Universums“, sagt Martin Weides, seit 2015 Gruppenleiter am Physikalischen Institut des KIT. Gelingt die geplante quantenmechanische Simulation, wäre dies „ein Meilenstein auf dem Weg zum universellen Quantencomputer.“

Ähnliche Artikel

  • Programmbibliothek für Quantensimulation springt auf Version 0.9.1

    Die C-Bibliothek Libquantum springt nach fast drei Jahren von Version 0.2.4 auf 0.9.1. An Bord ist ein neues API, mit dem sich quantenmechanische Zustände simulieren lassen.

  • Quantenrechner simulieren, Teil 1

    Die quelloffene C-Bibliothek Libquantum ermöglicht simuliertes Quantencomputing auf einem gewöhnlichen PC. Der erste Teil des zweiteiligen Artikels führt in Quantencomputing ein und endet mit einer allgemeinen Beschreibung von Libquantum. Der zweite Teil zeigt an einem Beispiel, was sich mit der Libquantum-Bibliothek anstellen lässt.

  • Kaleidoskop

    Das Universum ab Anbeginn der Zeit spiegelt sich in den Gleichungen, mit denen Astrophysiker Supercomputer füttern. Was herauskommt, sind Entwicklungshypothesen, die sich an Beobachtungen messen lassen.

  • Linux-Superrechner errechnet Fundort dunkler Materie

    Die Ergebnisse der dunkle-Materie-Simulation Aquarius liegen vor. Dabei half der Linux-Superrechner HLRB II im Forschungszentrum Garching bei München. Die Simulationssoftware wird im Lauf des nächsten Jahres quelloffen.

  • Google macht Fortschritte im Quantencomputing

    Hartmut Neven, Director of Engineering bei Google, berichtet über Fortschritte im Quantencomputing. Ein bestimmtes Optimierungsproblem lasse sich mit einem Quantencomputer schneller lösen als mit konventionellen Rechnern.

comments powered by Disqus

Ausgabe 11/2017

Digitale Ausgabe: Preis € 6,40
(inkl. 19% MwSt.)

Stellenmarkt

Artikelserien und interessante Workshops aus dem Magazin können Sie hier als Bundle erwerben.